
EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Automatic testing
Leveraging monitors and executable

specifications for automatic bug finding

CS-214 - 4 Dec 2024
Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

Final exam: keyboard prereg
Fill the form on Moodle if you need
to bring your own keyboard.

Unguided lab checkoffs
Dec 17th, 20th.
Early check-offs on Dec 13th.

Debrief for week 11
Out now

Internal poll for November
Your chance to comment on the
unguided lab & the final!

https://cs-214.epfl.ch/debriefs/2023-12-02/index.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

● Testing + Specs recap

● Property-based testing

○ Formulating specs

○ Writing generators

● Beyond properties

○ Differential testing

○ Mutational fuzzing

○ Crash fuzzing

● Beyond generators

○ Black-box fuzzing

○ Grey-box fuzzing

○ White-box fuzzing

This week:

Automated
testing

Learning objectives:

1. Leverage property-based
testing to find bugs

2. Describe extensions and
alternatives to PBT

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Automated testing with unit and integration tests

Expectations

● Model based expectation
List(1,2,1).distinctWithHashMap

 == List(1,2)

List(1,3,2).quickSort

 == List(1,2,3)

● Axiomatic expectation
noDuplicates:

 List(1,2,1).distinctWithHashMap

isSorted:

 List(1,3,2).sort

Automated test = System under test + Input + Expectation

Tests

● Requirements

○ Acceptance tests

○ System tests

● Functionality

○ Unit/Integration tests

Typically 1 input

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: Limitations of unit/integration tests?

● Writing tests is tedious and time consuming

● Basic tests crowd out interesting tests

● Tests are often incomplete: need to think of the right inputs!

Regression tests are easy.

Comprehensive tests are hard.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Automated testing with monitors

Tests

● Requirements

○ Acceptance tests

○ System tests

● Functionality

○ Unit/Integration tests

Typically 1 input

○ Monitors

Arbitrarily many inputs

Specs

● Model based spec
ls.distinctWithHashMap.ensuring: r=>

 r == ls.distinct

ls.quickSort.ensuring: r=>

 r == ls.sorted

● Axiomatic spec
ls.distinctWithHashMap.ensuring: r=>

 noDuplicates(r)

ls.quickSort.ensuring: r=>

 isSorted(r)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of monitoring:

Use integration runs and
real executions to test
individual components

1 unit test

1 monitor

= 1 input/output pair

= infinitely many tests,
 over the whole life of the application

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Programming with unit tests and integration tests

Write code

Run tests
and debug

Think hard about
interesting inputs

Write unit tests
and integration

tests

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Programming with monitors

Write code

Run app
and debug

Think hard about
interesting properties

Write monitors

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

2: Woops,

Monitoring detects errors… in the wild!

1: Write nice, monitored code
/** Removes diacritics and all non-alphabetic characters from `s`. */
 def normalizeString(str: String): String = {
 Normalizer.normalize(str, Normalizer.Form.NFD)
 .replaceAll("\p{InCombiningDiacriticalMarks}+", "")
 .replaceAll("[^a-zA-Z]+", "")
 .toLowerCase
 } ensuring (_.forall(c ⇒ 'a' ≤ c && c ≤ 'z'))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Two problems in this function

1. It’s not pure
/** Removes diacritics and all non-alphabetic characters from `s`. */
 def normalizeString(str: String)(using locale: Locale): String = {
 Normalizer.normalize(str, Normalizer.Form.NFD)
 .replaceAll("\p{InCombiningDiacriticalMarks}+", "")
 .replaceAll("[^a-zA-Z]+", "")
 .toLowerCase(locale)
 } ensuring (_.forall(c ⇒ 'a' ≤ c && c ≤ 'z'))

2. It’s not properly tested!
Needs all locales and many strings

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of property-based testing:

Generate synthetic inputs
to validate specifications

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Demo

Scalacheck

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

forAll((x: Int) => x + 1 - 1 == x).check()

forAll { (l: List[Int]) =>

l.reverse == l.foldLeft(Nil)((acc, x) => x :: acc)

}.check()

forAll { (l: List[Int]) =>

l.reverse == l.foldRight(Nil)((x, acc) => x :: acc)

}.check()

forAll { (l: List[Int]) =>

l.head :: l.tail == l

}.check()

forAll { (l: List[Int]) =>

(l != Nil) ==> (l.head :: l.tail == l)

}.check()

forAll { (x: Int) =>

 (x != Int.MaxValue) ==> (x + 1 > x)

}.check()

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: PBT for stateful code

State machines are pure!

● Input: Sequence of events

● Specs:

- Model based (function of all events)

- Axiomatic (property of the state)

Exercise: Test your state machines using ScalaCheck

(It has custom support for it!)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Beyond PBT: Getting rid of specs

● Differential testing: Use two SUTs (systems under test)

Like model-based testing, but the model my be wrong:

ls.quickSort == ls.mergeSort

● Mutational testing: Change inputs without changing output

eval(e) == eval(Plus(e, 0)) == eval(Times(e, 1))

● Crash testing: Use “does not crash” as spec

try { eval(e) } catch _ => “Test failed!”

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Beyond PBT: Getting rid of input generators

● Basic (black-box) fuzzing: Explore bit patterns

main() work with bytes, so no need for custom generators!

● Instrumentation-guided (grey-box) fuzzing: Maximize coverage

Record program execution to find interesting inputs

● Concolic (white-box) fuzzing: Use symbolic execution

Use logic solver to reverse-engineer interesting inputs

