Automatic testing

Leveraging monitors and executable
specifications for automatic bug finding

CS-214 -4 Dec 2024
Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Final exam: keyboard prereg
Fill the form on Moodle if you need
to bring your own keyboard.

Unguided lab checkoffs
Dec 17th, 20th.
Early check-offs on Dec 13th.

Debrief for week 11
Out now

Internal poll for November
Your chance to comment on the
unguided lab & the final!

https://cs-214.epfl.ch/debriefs/2023-12-02/index.html

e Testing + Specs recap
e Property-based testing

o Formulating specs

This week:
o Writing generators
AUtomated e Beyond properties
teSting o Differential testing

o Mutational fuzzing

Learning objectives: o Crash fuzzing

1. Leverage property-based e Beyond generators

testing to find bugs o Black-box fuzzing

2. Describe extensions and

o Grey-box fuzzing
alternatives to PBT

o White-box fuzzing

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Automated testing with unit and integration tests

Tests

e Functionality

o Unit/Integration tests

Typically 1 input

Expectations

e Model based expectation

List(1,2,1).distinctWithHashMap
= List(1,2)
List(1,3,2).quickSort
= List(1,2,3)

Axiomatic expectation

noDuplicates:
List(1,2,1).distinctWithHashMap
1sSorted:
List(1,3,2).sort

Automated test = System under test + Input + Expectation

214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: Limitations of unit/integration tests?

e Writing tests is tedious and time consuming
e Basic tests crowd out interesting tests

e Tests are often incomplete: need to think of the right inputs!

Regression tests are easy.

Comprehensive tests are hard.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Automated testing with monitors

Tests Specs

e Model based spec

ls.distinctWithHashMap.ensuring: r=
r = ls.distinct

ls.quickSort.ensuring: r=

r = ls.sorted
e Functionality e Axiomatic spec
O Unit/lntegration tests ls.distinctWithHashMap.ensuring: r=
noDuplicates(r)

Typlcallyl Input ls.quickSort.ensuring: r=
o Monitors isSorted(r)

Arbitrarily many inputs

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of monitoring:

Use integration runs and
real executions to test
individual components

1 unit test =1 input/output pair

1 monitor = infinitely many tests,
over the whole life of the application

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Programming with unit tests and integration tests

l/(/rite 606{8

[hink hard about
interecting fn,butr

Run tects
and debug

Urite vnit tests
and (ntegration
teste

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Programming with monitors

[/{/m’te 606{8

[hink hard about
interecting propertiec

Run app
and debug

Uirite monitore

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Monitoring detects errors... in the wild!

1: Write nice, monitored code

/** Removes diacritics and all non-alphabetic characters from s . */
def normalizeString(str: String): String = {
Normalizer.normalize(str, Normalizer.Form.NFD)
.replaceAll1("\p{InCombiningDiacriticalMarks}+", "")
.replaceAll1("["a-zA-Z]+", "")
.toLowerCase
} ensuring (_.forall(c =

a' < c & c

'z"))

IN

2: Woops, Assertion Failed for createDictionary #6s2

b 4 * ©

Last month in Labs - Anagrams PIN STAR WATC

Hello,

| have a problem with my function createDictionary. | got message that says "assertion failed"

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Two problems in this function

1. It's not pure

/** Removes diacritics and all non-alphabetic characters from s . */
def normalizeString(str: String)(using locale: Locale): String = {
Normalizer.normalize(str, Normalizer.Form.NFD)
.replaceAll1("\p{InCombiningDiacriticalMarks}+", "")
.replaceAll1("["a-zA-Z]+", "")
.toLowerCase(locale)
} ensuring (_.forall(c = 'a' < c &8 c < 'z'))

2. It's not properly tested!

Needs all locales and many strings

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of property-based testing:
Generate synthetic inputs
to validate specifications

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Scalacheck

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

forAll((x: Int) => x + 1 - 1 == x).check()

forAll { (1: List[Int]) =>
l.reverse == 1l.foldLeft(Nil) ((acc, x) => x :: acc)
}.check()

forAll { (1: List[Int]) =>
l.reverse == 1.foldRight(Nil) ((x, acc) => x :: acc)
}.check()

forAll { (1: List[Int]) =>
l.head :: l.tail ==
}.check()

forAll { (1: List[Int]) =>
(L !'= Nil) ==> (l.head :: l.tail == 1)
}.check()

forAll { (x: Int) =>

(x !'= Int.MaxValue) ==> (x + 1 > x)
}.check()

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: PBT for stateful code

State machines are pure!
e Input: Sequence of events

e Specs:
- Model based (function of all events)
- Axiomatic (property of the state)

Exercise: Test your state machines using ScalaCheck

(It has custom support for it!)

Beyond PBT: Getting rid of specs

e Differential testing: Use two SUTs (systems under test)

Like model-based testing, but the model my be wrong:

ls.quickSort = ls.mergeSort

e Mutational testing: Change inputs without changing output

eval(e) = eval(Plus(e, 0)) = eval(Times(e, 1))

e Crash testing: Use “does not crash” as spec

try { eval(e) } catch _ = “Test failed!”

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Beyond PBT: Getting rid of input generators

e Basic (black-box) fuzzing: Explore bit patterns

main() work with bytes, so no need for custom generators!

e Instrumentation-guided (grey-box) fuzzing: Maximize coverage

Record program execution to find interesting inputs

e Concolic (white-box) fuzzing: Use symbolic execution

Use logic solver to reverse-engineer interesting inputs

