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Quick 
announcements

Final exam: keyboard prereg
Fill the form on Moodle if you need 
to bring your own keyboard. 

Unguided lab checkoffs
Dec 17th, 20th.
Early check-offs on Dec 13th.

Debrief for week 11
Out now

Internal poll for November
Your chance to comment on the 
unguided lab & the final!

https://cs-214.epfl.ch/debriefs/2023-12-02/index.html
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● Testing + Specs recap

● Property-based testing

○ Formulating specs

○ Writing generators

● Beyond properties

○ Differential testing

○ Mutational fuzzing

○ Crash fuzzing

● Beyond generators

○ Black-box fuzzing

○ Grey-box fuzzing

○ White-box fuzzing

This week:

Automated 
testing

Learning objectives:

1. Leverage property-based 
testing to find bugs

2. Describe extensions and 
alternatives to PBT
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Automated testing with unit and integration tests

Expectations

● Model based expectation
List(1,2,1).distinctWithHashMap

  == List(1,2)

List(1,3,2).quickSort 

  == List(1,2,3)

● Axiomatic expectation
noDuplicates:

  List(1,2,1).distinctWithHashMap

isSorted:

  List(1,3,2).sort

Automated test = System under test + Input + Expectation

Tests

● Requirements

○ Acceptance tests

○ System tests

● Functionality

○ Unit/Integration tests

Typically 1 input
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Exercise: Limitations of unit/integration tests?

● Writing tests is tedious and time consuming

● Basic tests crowd out interesting tests

● Tests are often incomplete: need to think of the right inputs!

Regression tests are easy.

Comprehensive tests are hard.
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Automated testing with monitors

Tests

● Requirements

○ Acceptance tests

○ System tests

● Functionality

○ Unit/Integration tests

Typically 1 input

○ Monitors

Arbitrarily many inputs

Specs

● Model based spec
ls.distinctWithHashMap.ensuring: r=>

  r == ls.distinct

ls.quickSort.ensuring: r=>

  r == ls.sorted

● Axiomatic spec
ls.distinctWithHashMap.ensuring: r=>

 noDuplicates(r)

ls.quickSort.ensuring: r=>

  isSorted(r)
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Big idea of monitoring:

Use integration runs and 
real executions to test 
individual components

1 unit test

1 monitor

= 1 input/output pair

= infinitely many tests, 
   over the whole life of the application
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Programming with unit tests and integration tests

Write code

Run tests 
and debug

Think hard about 
interesting inputs

Write unit tests 
and integration 

tests
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Programming with monitors

Write code

Run app 
and debug

Think hard about 
interesting properties

Write monitors
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2: Woops,

Monitoring detects errors… in the wild!

1: Write nice, monitored code
/** Removes diacritics and all non-alphabetic characters from `s`. */
  def normalizeString(str: String): String = {
    Normalizer.normalize(str, Normalizer.Form.NFD)
              .replaceAll("\p{InCombiningDiacriticalMarks}+", "")
              .replaceAll("[^a-zA-Z]+", "")
              .toLowerCase
  } ensuring (_.forall(c ⇒ 'a' ≤ c && c ≤ 'z'))
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Two problems in this function

1. It’s not pure
/** Removes diacritics and all non-alphabetic characters from `s`. */
  def normalizeString(str: String)(using locale: Locale): String = {
    Normalizer.normalize(str, Normalizer.Form.NFD)
              .replaceAll("\p{InCombiningDiacriticalMarks}+", "")
              .replaceAll("[^a-zA-Z]+", "")
              .toLowerCase(locale)
  } ensuring (_.forall(c ⇒ 'a' ≤ c && c ≤ 'z'))

2. It’s not properly tested!
Needs all locales and many strings
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Big idea of property-based testing:

Generate synthetic inputs 
to validate specifications
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Demo

Scalacheck
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forAll((x: Int) => x + 1 - 1 == x).check()

forAll { (l: List[Int]) =>

l.reverse == l.foldLeft(Nil)((acc, x) => x :: acc)

}.check()

forAll { (l: List[Int]) =>

l.reverse == l.foldRight(Nil)((x, acc) => x :: acc)

}.check()

forAll { (l: List[Int]) =>

l.head :: l.tail == l

}.check()

forAll { (l: List[Int]) =>

(l != Nil) ==> (l.head :: l.tail == l)

}.check()

forAll { (x: Int) =>

  (x != Int.MaxValue) ==> (x + 1 > x)

}.check()



EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: PBT for stateful code

State machines are pure!

● Input: Sequence of events

● Specs:

- Model based (function of all events)

- Axiomatic (property of the state)

Exercise: Test your state machines using ScalaCheck

(It has custom support for it!)
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Beyond PBT: Getting rid of specs

● Differential testing: Use two SUTs (systems under test)

Like model-based testing, but the model my be wrong:

ls.quickSort == ls.mergeSort

● Mutational testing: Change inputs without changing output

eval(e) == eval(Plus(e, 0)) == eval(Times(e, 1))

● Crash testing: Use “does not crash” as spec

try { eval(e) } catch _ => “Test failed!”
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Beyond PBT: Getting rid of input generators

● Basic (black-box) fuzzing: Explore bit patterns

main() work with bytes, so no need for custom generators!

● Instrumentation-guided (grey-box) fuzzing: Maximize coverage

Record program execution to find interesting inputs

● Concolic (white-box) fuzzing: Use symbolic execution

Use logic solver to reverse-engineer interesting inputs


